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Abstract. Cavity solitons are similar to spatial solitons, appearing as localized bright dots in the trans-
verse intensity profile of the electromagnetic field, but they arise in dissipative systems. In this paper we
consider a broad-area vertical-cavity semiconductor microresonator, driven by an external coherent field,
at room temperature. The active material is constituted by a Multiple Quantum Well GaAs/AlGaAs struc-
ture (MQW). We present a set of nonlinear dynamical equations for the electric field and the carrier density
valid for both a passive and an active (i.e. with population inversion) configuration. The complex nonlinear
susceptibility is derived on the basis of a full many-body theory, with the Coulomb enhancement treated
in the Padé approximation. The linear stability analysis of the homogeneous steady states is performed
with a generalised approach, and numerical simulations demonstrating the existence of spatial patterns
and cavity solitons in experimentally achievable parameter regions are given for the two configurations.

PACS. 42.70.Nq Other nonlinear optical materials; photorefractive and semiconductor materials –
42.65.Tg Optical solitons; nonlinear guided waves

1 Introduction

Applications to information technology are one of the
goals of the extensive work in the field of transverse pat-
terns formation in nonlinear optical systems [1–6]. The
problem of the correlation among different points in an
optical pattern can be solved by generating spatial struc-
tures which are localized in a portion of the transverse
plane in such a way that they are individually address-
able and independent from one another.

The confinement of light in short intervals of time and
small regions of space is a well-known problem in nonlin-
ear fiber optics, where temporal solitons are due to the
confining action of the nonlinear material that prevents
the spreading of the pulse caused by frequency disper-
sion. Moreover, an extensive literature on spatial solitons
also exists (see e.g. [7,8]), where the confinement of light
in localized region of the transverse plane is based on
beam propagation in a nonlinear medium: in this case
the nonlinearity counterbalances the spreading effect of
diffraction.

In order to perform information encoding and process-
ing, however, the usual kind of spatial solitons, based on
propagation schemes, plays a marginal role in our case. As
a matter of fact, the basic property of the localized struc-
tures considered in our study is that, once they have been
created, for example by an address pulse, they persist as
stationary dots also when the exciting pulse is removed,
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until they are wiped out by another suitable pulse. In this
way we have a tool which allows us to exert an exter-
nal control on the localized structures. This behavior is
ensured by the presence of an optical cavity, a distinc-
tive feature of our research. These localized structures are
named Cavity Solitons (CS).

Pioneering work on CS has been done by Moloney
et al. [9–11]. Solitons in cavity systems were also pre-
dicted by Rosanov [12–14] and by Mandel et al. [15,16],
even if the mechanism underlying their formation is differ-
ent. More recently, the existence of stable CS in a simple
two-level model for a saturable absorber was predicted
by Firth et al. [17], while in [18], the formation, control
and interaction properties of CS were studied for the same
model. Moreover, the formation of CS in photorefractively
pumped ring resonators [19], in active cavities with a sat-
urable absorber [20,21] and in quadratic nonlinear me-
dia [22,23] has been reported.

Most interesting from the practical viewpoint, for
miniaturization purposes, is the case in which the active
medium is a semiconductor: the standard configuration on
which we will focus our attention is that of an optical cav-
ity containing a semiconductor medium and driven by a
stationary holding beam, which provides the energy to the
system. Both the material sample and the holding beam
have a large section.

In recent papers [24–27] a number of phenomenologi-
cal simple models have been derived in order to describe
the semiconductor material: more precisely, in [25–27] the
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active medium is assumed to be a multiple quantum well
structure (MQW), with the excitonic nonlinearity mod-
eled as a Lorentzian line. The existence and stability of
CS for this model has been demonstrated, both in absence
and in presence of carrier injection providing population
inversion, in a wide range of the model parameters. On the
other hand, a more accurate modelization of the semicon-
ductor material, including a microscopic description of the
optical nonlinearity as that given in [28,29], has been per-
formed in [30–32]. In [32], the case of a bulk semiconductor
without any injection of carriers was considered. In order
to describe accurately the nonlinear response of the mate-
rial from a microscopic viewpoint, the free-carrier suscep-
tibility has been corrected by the phenomenological intro-
duction of the two most relevant many-body effects for the
operational regime considered: the band-gap renormaliza-
tion and the Urbach-tail. For such a model existence and
stability of CS has been theoretically predicted [33,34].

This case is interesting on the applicative side, because
bulk samples are easier to grow and can be architectured
with high accuracy, e.g. with respect to planarity require-
ments. Besides, theory is currently a key element in steer-
ing experiments toward a successful observation of CS in
these devices [35].

In this paper we have introduced a different mod-
elization for the case of a semiconductor medium with
a MQW structure, and calculated the nonlinear suscep-
tibility from a microscopic viewpoint [36]. In 2-D geome-
try, the Coulomb enhancement due to many-body effects
is much more relevant at room temperature, than in the
case of a bulk semiconductor [37]. We have taken into ac-
count the Coulomb enhancement by applying the Padé
approximation [28,29] in the microscopic description of
the semiconductor. Also the band-gap renormalization has
been included at the same microscopic level. Moreover, the
Urbach tail correction has been considered in the same
way as in the bulk case.

Then, starting from the calculated nonlinear suscepti-
bility, we have performed the numerical integration of the
equations describing both field and carrier dynamics, with
the aim of finding stable CS. We have considered both the
passive and the active configuration: in the latter one an
electric current is supplied in order to obtain population
inversion in the nonlinear material. However, we have al-
ways assumed to work below the laser threshold.

In Section 2, we introduce a general model describing
a vertical-cavity semiconductor microresonators. Section 3
is devoted to a detailed description of the nonlinear sus-
ceptibility χnl in the case of a MQW structure. Then, the
linear stability analysis is performed in Section 4, while
in Section 5 some numerical results on pattern formation
and CS existence are presented. Finally, Section 6 con-
cludes this paper.

2 Vertical-cavity semiconductor
microresonator

We study here a broad-area vertical-cavity semiconductor
microresonator, driven by an external coherent field, at

DBR’s

Electric
contacts

Active layer

EI ER

Fig. 1. Scheme of the device. The slowly varying envelopes of
the injected field ẼI and of the reflected field ẼR are shown.

room temperature. The resonator is of the Fabry-Perot
type with Distributed Bragg Reflectors (DBR), and both
the reflectors and the active layers are perpendicular to
the direction z of propagation of the radiation inside the
cavity. The scheme of the device is depicted in Figure 1.

We consider a sample in which the active mate-
rial consists of few Quantum Wells of GaAs/AlGaAs
type (MQW). We speak about “active” material, referring
to the semiconductor layers where the nonlinear interac-
tion takes place. We will study both a passive configu-
ration, in which no current is injected to create a popu-
lation inversion, and an active configuration, in which an
injected current causes a population inversion in the active
medium, but in such a way to keep the device below the
laser threshold. Typical device dimensions of interest are
100×100 µm for transverse section, a few µm for resonator
length (λ-cavity), 10nm for quantum well thickness.

The basic equations governing the dynamics of the sys-
tem are derived in the paraxial and slowly varying enve-
lope approximations, mean field limit and single longitudi-
nal mode approximation. They can be cast in the following
form [26,32]:

∂Ẽ

∂t
= −(1 + iθ)Ẽ + ẼI + iΣχnlẼ + i∇2

⊥ Ẽ (1)

∂Ñ

∂t
= −γ

[
Ñ + βÑ2 − I −=(χnl)|Ẽ|2 − d∇2

⊥ Ñ
]
. (2)

The dynamical variables are the adimensional electric field

Ẽ =
√
ε0τrLA

~N0
E, (3)

and the normalized carrier density Ñ = N/N0, where ε0
is the vacuum dielectric constant, τr is the nonradiative
recombination rate of carriers, LA is the thickness of the
active material, and N0 is the carrier density at trans-
parency.

ẼI is the adimensional slowly varying envelope of the
field injected into the cavity, at frequency ω0, propagating
through the material at velocity v = c/nb, nb being the
background refractive index of the semiconductor. Ĩ is the
normalized injected current and will be different from zero
only in the active configuration.

Time is scaled to the photon lifetime τph = 2L/vT ,
L being the cavity length and T the mean value of the
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Table 1. Typical physical values for a MQW sample based on
GaAs compounds.

Cavity length L = 2.5µm

Thickness of the active layer LA = 300 nm

Mirror reflectivity front: RF = 0.995

back: RB = 0.997

Carrier nonradiative lifetime τr = 1÷ 5 ns

Carrier diffusion length ld = 3µm

Background refractive index nb = 3.5

front (TF) and back (TB) mirror transmissivity, while the
transverse coordinates x and y are scaled to the diffraction
length la =

√
τphv2/2ω0. The adimensional decay rate γ is

the ratio between photon and carrier lifetimes γ = τph/τr,
while the quadratic term βÑ2 is related to two-carriers
radiative recombination (spontaneous emission).

The bistability parameter Σ is defined as

Σ =
LAω0

nbcT
; (4)

Σ plays essentially the same role as the parameter C of
optical bistability [38,39], used in the two-level saturable
absorber model [17,18].

The transverse Laplacian is defined as usual: in the
field equation (1) it describes diffraction in the parax-
ial approximation, while in the carrier equation (2) rep-
resents carrier diffusion, with an adimensional diffusion
coefficient d.

The radiation-matter interaction is described by the
complex nonlinear susceptibility χnl, which is a function of
the carrier density N and of the frequency of the injected
field ω0.

In experiments with vertical-cavity semiconductor de-
vices, the reflected field is analyzed. Thus, if we want to
compare our predictions with the experiments, we have
to take into account the relation between the intracavity
field and the reflected field. In our notation, the relation
holding for a Fabry-Perot resonator reads [40]:

ẼR = ẼI − σẼ, (5)

where the parameter σ depends on the transmissivity of
the front mirror: σ = TF/T . Note that if the two mirrors
have the same transmissivity σ = 1. In Table 1 we report
the values of some physical parameters characteristic of
the samples we are dealing with.

Now we need to introduce in equations (1, 2) the ex-
plicit dependence of the nonlinear susceptibility χnl on the
carrier density N and on the input frequency ω0. Next sec-
tion will be devoted to a detailed description of χnl in the
MQW case. In particular, a key element will be the role
of the excitonic resonance.

3 Microscopic theory for the semiconductor
material

The radiation-matter interaction inside a semiconductor
medium is described by the semiconductor Bloch equa-
tions [28,29]. In considering a 2-D structure, we take into
account the two main many-body effects which affect the
optical response of the medium.

The first one is the density-dependent contribution to
the transition energy (the so-called band-gap renormal-
ization). The second one is the renormalization of the
electric-dipole interaction energy. The latter effect is re-
sponsible for the excitonic resonance that is very pro-
nounced, also at room temperature [37].

As for the band-gap renormalization, a contribution is
given by the increasingly effective plasma screening due to
the increase of the carrier density. In fact, at low carrier
density, the lack of vacancies in the valence band prevents
the redistribution of charge in order to effectively screen
the Coulomb potential. As the carrier density increases,
the higher densities of holes and electrons in the valence
and conduction bands, respectively, result in a more effi-
cient screening. The term that includes this effect is called
Coulomb-hole self energy ∆εCH and reads [28,29]:

∆εCH =
∑
q⊥ 6=0

(Vs,q⊥ − Vq⊥)

= −
∑
q⊥ 6=0

Vq⊥
ω2

pl

ω2
pl

(
1 + q⊥

κ

)
+ C

4

(
~q2
⊥

2mR

)2 , (6)

where q⊥ is the 2-D carrier momentum and we used the
plasmon-pole approximation for the screened Coulomb po-
tential

Vs,q⊥ = Vq⊥

ω2
pl
q⊥
κ + C

4

(
~q2
⊥

2mR

)2

ω2
pl

(
1 + q⊥

κ

)
+ C

4

(
~q2
⊥

2mR

)2 , (7)

being Vq⊥ the 2-D Fourier transform of the Coulomb po-

tential; ωpl = 2πe2Nq⊥
ε0n

2mR
is the plasma frequency;

κ =
2πe2

ε0n
2

(
∂Ne

∂µe
+
∂Nh

∂µh

)
is the inverse screening length.

By converting the summation over q⊥ in equation (6)
into an integral, one gets approximately [41]:

∆εCH = −2εRa0κ ln

[
1 +

(
32πNa2

0

C(a0κ)3

)1/2
]
, (8)

where εR and a0 are the Rydberg energy and the Bohr
radius of the exciton, respectively.

The other effect which renormalizes the band-gap
is due to the Hartree-Fock energy correction and is
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called screened-exchange shift. By considering the quasi-
equilibrium approximation, it reads [28,29]:

∆εSX = −
∑
q⊥

Vs,q⊥(feq⊥ + fhq⊥), (9)

where the Fermi-Dirac distributions are defined as:

fαq⊥(N) =
1

exp {β̄[εαq⊥ − µα(N)]}+ 1
, (10)

the label α = e,h referring to electrons and holes re-
spectively, β̄ = 1/kBT , being kB the Boltzmann constant
and T = 300 K. µα(N) is the chemical potential of elec-
trons/holes and εαq⊥ = ~2q2

⊥/2mα is the electron/hole
energy.

Due to these corrections, the renormalized 2-D band
gap can be written as:

ε′gap = ε(2D)
gap +∆εCH +∆εSX . (11)

As for the Coulomb-enhancement, we adopt the Padé ap-
proximation in resolving the semiconductor Bloch equa-
tions [41,42]. In the quasi-equilibrium approximation, the
expression of the complex susceptibility which describes
the radiation-matter interaction reads [29]:

χ(N,ω0)=− i
ε0~VA

∑
k⊥

|µk⊥ |2
1−q(k⊥)

fek⊥(N)+fhk⊥(N)− 1
i(ωk⊥−ω0)+γk⊥

·

(12)

µk⊥ is the dipole matrix element between the valence and
the conduction band, calculated in [43,44]:

|µk⊥ |2 =
ε
(2D)
gap

(
ε
(2D)
gap +∆s

)
4
(
ε
(2D)
gap + 2∆s/3

) ( 1
me
− 1
m0

)(
e~
~ωk⊥

)2

,

(13)

~ωk⊥ = ε′gap + ~2k2
⊥/2mR is the transition energy at the

carrier momentum k⊥, mR being the electron/heavy-hole
reduced mass; VA is the active volume; the Fermi-Dirac
distributions are defined in equation (10). Moreover, in
order to correct the overestimation of the effects of homo-
geneous broadening because of the slowly decaying tails of
Lorentzian functions, leading to an excessive absorption at
photon frequencies below the band gap, we have consid-
ered an exponential dependence on k⊥ in the polarization
decay rate γk⊥ :

γk⊥ =
2γp

exp
(~ωk − ~ω0

E0

)
+ 1

, (14)

where γp and E0 are phenomenological parameters [44].
This assumption restores the exponential decay for fre-
quencies below the band gap, which appears in experi-
mental spectra and is known as the Urbach tail of the
electron-hole resonances in semiconductors.

The factor [1 − q(k⊥)]−1 represents the Coulomb en-
hancement in the Padé approximation [29]; it results:

q(k⊥) =
1
µk⊥

∑
k′⊥ 6=k⊥

Vs,|k′⊥−k⊥|χ
(0)
k′⊥
, (15)

where

χ
(0)
k⊥

= − iµk⊥
~

fek⊥(N) + fhk⊥(N)− 1
i(ωk⊥ − ω0) + γk⊥

· (16)

As usual, the imaginary part of the complex susceptibility
is related to absorption, while the real part of (12) contains
the information related to the refractive index change due
to the presence of the electric field. More precisely, since
the contribution to the refractive index at zero-carriers is
already included in the background lattice refractive in-
dex nb, we describe the effective carrier-induced refractive
index change δn by introducing the nonlinear susceptibil-
ity χnl [45]. As for its real part, it is defined as:

<[χnl(N,ω0)] = <[χ(N,ω0)]−<[χ(0, ω0)]. (17)

The Padé approximation, however, holds provided we con-
sider carrier densities above the Mott-density [28], that for
the devices we are dealing with is about 1011 cm−2. In or-
der to evaluate the complex susceptibility at zero-carriers
density in equation (17) we decided to perform a linear
extrapolation from the values calculated at larger densi-
ties.

On the contrary, the imaginary part of χnl coincides
with that of the complex susceptibility (12).

The relations linking the real and imaginary part of χnl

to the refractive index change δn and the intensity absorp-
tion coefficient ᾱ, respectively, are the following [29]:

δn =
1

2nb
<(χnl); ᾱ =

ω0

nbc
=(χnl). (18)

The summations in equations (9, 12, 15) can be calcu-
lated numerically, by following an ordinary procedure of
converting them into integrals (see for example [29]).

We devoted an initial phase of our research to the op-
timization of the various parameters present in the model,
in order to match the theoretical results with the experi-
mental evidences. In particular, we set the parameters in
such a way to have the excitonic peak at about 1.46 eV
with a width of about 4 meV, as it results from absorption
spectra for GaAs MQW structures, at room temperature
(see for example Ref. [37]).

Then, we are able to show in Figure 2 the calculated
refractive index change δn (a) and the absorption coeffi-
cient ᾱ (b), for the MQW case, as functions of the input
photon energy. In these plots we have also introduced the
adimensional band-gap detuning parameter ∆ defined as:

∆ = (ε2D
gap − ~ω0)/4εR, (19)

where εR is the excitonic Rydberg energy (the factor 4 is
present because we are dealing with a 2-D geometry).
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Fig. 2. Refractive index variation (a) and absorption coeffi-
cient (b) as functions of the input photon energy and of the
band-gap detuning parameter ∆, for different values of the car-
rier density N .

From the absorption spectra reported in Figure 2b,
we can observe the presence of the excitonic resonance
due to the Coulomb enhancement. The spectra obtained
with our calculation of the nonlinear susceptibility in the
MQW case are comparable with similar spectra present
in literature [28,46]. For the limitation of the Padé ap-
proximation stated above, we show absorption spectra for
N ≥ 1011 cm−2.

We note that the excitonic peaks obtained in experi-
mental spectra (see for example Ref. [37]) appear sharper
for very low illuminating power: they correspond to very
low carrier densities, where we can not apply the Padé
approximation. Moreover, in the absorption spectrum re-
ported in reference [37] for GaAs MQW structure at room
temperature, it is evident the presence of the light-hole ex-
citonic peak, that we have not included in our model.

In order to have a check for the refractive index change
and the absorption coefficient reported above, we have also
performed the calculation of the refractive index change
δn in a different way, by exploiting the Kramers-Kronig
relations which link the real and imaginary parts of the
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Fig. 3. Refractive index variation as functions of the input
photon energy and of the band-gap detuning parameter ∆, for
different values of the carrier density N , obtained by means
of the Kramers-Kronig transformation of the absorption coef-
ficient α reported in Figure 2b.

complex susceptibility. In particular, taking into account
equation (18), we can write the Kramers-Kronig relation
in the following form:

δn(ω) =
2c
π
P.P.

∫ +∞

0

δᾱ(ω′)
ω′2 − ω2

dω′. (20)

In Figure 3 we report the refractive index change δn as
a function of the input photon energy, for different values
of the carrier density N , calculated from equation (20),
where we used the previously determined absorption coef-
ficient ᾱ (see Fig. 2b). As a matter of fact there is a very
good agreement between this curves and those reported
in Figure 2a.

In the active configuration the device becomes an am-
plifier. Then, we have to consider the gain, instead of the
absorption, spectra and the linewidth enhancement fac-
tors: they can be calculated from the nonlinear suscepti-
bility χnl, resulting:

g = − ω0

nbc
=(χnl); α =

∂<(χnl)/∂N
∂=(χnl)/∂N

, (21)

where g and α are the gain coefficient and the linewidth
enhancement factor, respectively. In Figure 4 are pre-
sented the calculated gain coefficients and α-factors as
functions of the input photon energy. Again, these quan-
tities are comparable with similar spectra present in
literature [29].

The expression (12) for the nonlinear susceptibility χnl

will be the basis for the analysis of a microresonator with
a MQW active layer presented in following sections.
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Fig. 4. Active configuration. Gain coefficient g (a) and
linewidth enhancement factor (b) as functions of the input
photon energy and of the band-gap detuning parameter ∆,
for different values of the carrier density N .

4 Homogeneous steady state and linear
stability analysis

The homogeneous solution (ES, NS) of equations (1, 2)
(hereafter we will omit the tilde for E and N) is obtained
by setting to zero all the temporal and spatial derivatives.
We obtain

|EI|2 = |ES|2
{

[1+Σ=(χnl)]
2 + [θ−Σ<(χnl)]

2
}
, (22)

|ES|2 =
NS + βN2

S − I
=(χnl)

· (23)

In the active configuration the nonlinear material acts as
an amplifier, and in order to determine the laser thresh-
old Ith, we have to additionally set EI = E = 0 in equa-
tions (1, 2). In fact, we are interested in the condition

for which the intracavity field E starts to become differ-
ent from zero, when the driving field EI is not present.
Actually, intracavity field is different from zero also be-
low threshold, due to spontaneous emission. In our model,
however, we consider spontaneous emission in the lasing
mode as a negligible effect. Then, from equation (1) we
have the condition:

Σ=
[
χnl(N th)

]
+ 1 = 0, (24)

giving the value of the carrier density at threshold N th.
Then, from equation (2), we obtain the value of the laser
threshold:

Ith = N th + β
(
N th

)2
. (25)

As we said before, in the active configuration we will al-
ways consider the laser below threshold.

For appropriate choices of the parameters, the curves
of |ES| as a function of |EI| are S-shaped. This behavior is
reflected by the shape of the |ER| vs. |EI| curves (examples
are depicted in the following section).

Now, we want to study the instabilities of the ho-
mogeneous steady state, giving rise to a spatially mod-
ulated pattern (Modulational Instability). To this aim,
we perform the linear stability of the homogeneous so-
lution, by studying the response of the system to small
spatially modulated fluctuations of wavevector K around
the steady state. The eigenvalue λ satisfies the cubic
equation [27,32]:

λ3 + a2λ
2 + a1λ+ a0 = 0 , (26)

where the coefficients ai, i = 0, 1, 2 depend on the system
parameters β, γ, θ, d, Σ, EI and on the modulus square
K2 of the transverse wavevector in the following way:

a2 = 2A1 + γ(A4 + dK2) , (27)

a1 = A2
1+(A2+K2)2+γ

[
2A1(A4+dK2)+A3

∂=(χnl)
∂N

]
,

(28)

a0 = γ
{[
A2

1 +
(
A2 +K2

)2](
A4 + dK2

)
−A3

[(
A2 +K2

) ∂< (χnl)
∂N

−A1
∂= (χnl)
∂N

]}
, (29)

with

A1 = 1 +Σ=(χnl), (30)
A2 = θ −Σ<(χnl), (31)
A3 = 2Σ|ES|2=(χnl), (32)

A4 = 1 + 2βNS − |ES|2
∂=(χnl)
∂N

· (33)

Equation (26) usually has one real and two complex con-
jugate roots. The two complex eigenvalues might in prin-
ciple give rise to a Hopf instability. However, it is easy to
show that, since γ � 1, the real part of these eigenvalues
is equal to −A1, which is always negative. Thus there are
no instabilities related to the complex eigenvalues.
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The instability associated with the real eigenvalue is
called Turing or stationary instability because it brings
the system to a new stationary state, different from the ho-
mogeneous one. The system passes from the stable to the
unstable domain when the real eigenvalue changes its sign
from negative to positive. Therefore, the stability bound-
ary is assigned by the condition λ = 0, which is in turn
equivalent to a0 = 0.

5 Numerical results

Now, we calculate the homogeneous steady states and the
extension of the Modulational Instability domains in the
parameter space. Then, we integrate numerically the dy-
namical equations (1, 2), by means of a split-step code
with periodic boundary conditions. This method consists
in separating the algebraic and the Laplacian terms in
the right-hand side of the equations: the algebraic term is
integrated using a Runge-Kutta algorithm, while for the
Laplacian operator a 2-D FFT is adopted [47]. This im-
plies that the number of points for each side of the grid
must be a power of 2.

We split our analysis in considering the passive and
the active configuration separately. For each one of these
cases we choose the parameters in order to be as close
as possible to the experimental feedback we receive from
our partners in the European Project PIANOS (see Ac-
knowledgements) and, simultaneously, to fulfill the em-
pirical conditions for CS observation stated in a previous
work [27].

Passive case

For this configuration, we have considered three operating
regimes: the first one is ∆ = 3, that is, an input frequency
below the excitonic resonance; the second one is ∆ = 1,
that is close to the excitonic resonance; the last one is
∆ = −3, that is well in the continuum of the absorption
spectrum.

Starting from the analysis of the instabilities affecting
the system, presented in Figure 5, for each one of the
previous cases we considered the set of parameters that
seem most favorable to observe CS.

In Figure 6 we report the bistability curves with a
complete characterization of the spatial patterns arising
as self-organized structures. We note that there are ex-
tended branches of CS (that in the case of reflection will
appear as dark spot on a brighter background), in all the
presented cases. However, the relative extension of these
branches with respect to the intensity of the holding beam
is larger for the cases ∆ = 1 and ∆ = −3. The parameter
σ was chosen as 1.5, that is we have assumed that the
transmission of the front mirror is larger than that of the
back mirror, as it happens in actual devices. As a gen-
eral remark, we note that values of σ greater than 1 are
beneficial in order to enhance the contrast of the spatial
patterns.
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Fig. 5. Passive configuration. Plane-wave instability (PWI)
and modulational instability (MI) as functions of θ, for differ-
ent parameters: (a) ∆ = 3, Σ = 80, β = 0; (b) ∆ = 1, Σ = 100,
β = 0.5; (c) ∆ = −3, Σ = 80, β = 1.

Active case

In this configuration, the microresonator is supplied with
an electrical current in order to create a population inver-
sion in the active material. In this condition the device
becomes an amplifier. From analysis of plots like those re-
ported in Figure 7a for the case ∆ = 3, we found that
extended regions of plane-wave and modulational insta-
bilities are present only for values of ∆ & 2.5, that is, the
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Fig. 6. Passive configuration. S-shaped homogeneous steady-
state curves (dashed line indicates unstable part) of the re-
flected field as a function of the injected field. Also the branches
of different stationary spatial structures are reported (it is plot-
ted the value of the field at the minimum of intensity). The
parameters are: (a) ∆ = 3, Σ = 80, θ = −10, β = 0, d = 0.3;
(b) ∆ = 1, Σ = 100, θ = 0, β = 0.5, d = 0.2; (c) ∆ = −3,
Σ = 80, θ = 13, β = 1, d = 0.1. The parameter σ is fixed
to 1.5.
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Fig. 7. Active configuration. (a) Plane-wave instability (PWI)
and modulational instability (MI) as functions of θ; (b) bistable
homogeneous steady-state curve (dashed line indicates unsta-
ble part) of the reflected field as a function of the injected field.
The branches of different stationary spatial structures are re-
ported (it is plotted the value of the field at the maximum of
intensity). The parameters are: ∆ = 3, Σ = 80, θ = −18.5,
β = 0, I = 1.3, d = 0.3 and σ = 2. The value of the current at
the laser threshold is Ith = 1.33.

frequency range of the driving field must be red-shifted
with respected to the gain peak. This corresponds to have
an α-factor larger than approximately 3 (see Fig. 4b). This
agrees with what we predicted in a previous paper, where
we described the MQW structure by a simpler model [26].
In Figure 7b we report the bistability curve and the spa-
tial pattern scenario for the case ∆ = 3. We observe that
also in this configuration the CS are present (in this case
CS appears as bright spot also in reflection), even if the
extension of their branch is much smaller than in the pas-
sive case. Also this feature is a confirmation of what we
already observed for the active configuration with the sim-
pler model [26].

6 Conclusions

In this paper we studied a broad-area vertical-cavity semi-
conductor microresonator, driven by an external coherent
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field, at room temperature. We focussed our attention
to a sample in which the active material consists of
GaAs/AlGaAs MQW structure. The resonator is of the
Fabry-Perot type with DBR as mirrors, and we described
the dynamics of the intracavity electric field and the car-
rier density by means of a set of partial differential equa-
tions, in which we included the transverse spatial effects,
considering field diffraction and carrier diffusion, through
the Laplacian operator in the paraxial approximation.

The radiation-matter interaction which takes place in
the active material was modelized through the nonlin-
ear susceptibility calculated from a microscopic viewpoint.
In our modelization we take into account the two main
many-body effects which are present in 2-D geometry: the
Coulomb enhancement, by performing the Padé approxi-
mation in the microscopic description of the semiconduc-
tor; and the band-gap renormalization, included at the
same microscopic level. Moreover, the Urbach tail correc-
tion was considered.

After a detailed study devoted to the optimization of
the parameters included in the microscopic model, in such
a way to approach experimental results, we were able to
calculate absorption/gain spectra for such a kind of struc-
tures, where the presence of the excitonic peak due to the
Coulomb enhancement was clearly evident.

Then, adopting the calculated nonlinear susceptibility,
we performed the numerical integration of the dynamical
equations, in order to analyze the transverse spatial struc-
tures exhibited by this devices. In particular we directed
our research to find stable Cavity Solitons. In our analysis,
we considered both a passive and an active configuration.
In the latter one, an external current is supplied to the
device, in order to get population inversion in the active
material. Moreover, we study the electric field emitted in
reflection, because this is the usual configuration adopted
in experimental set-ups.

In the passive configuration, we were able to find large
regions in the parameter space where CS are stable, in
agreement with the “empirical conditions” for the obser-
vation of CS stated in reference [27]. Moreover, we note
how, when we operate with the external frequency close
to the excitonic peak, the best conditions for CS obser-
vation imply cavity resonance. Also in the active configu-
ration we find stable CS, but the extensions of the stable
branches are smaller than in the passive case. These re-
sults agree with a previous work, where the MQW struc-
ture was described by a simpler model, which considered
only a Lorentzian resonance for the excitonic peak in the
passive case and the linewidth enhancement factor α in
the active case [26].

The theory developed in this and previous works is a
key element in steering to a successful observation of CS
current experiments in semiconductor microresonators.
This experiments are in progress in different European
Labs (CNET and INLN, France, PTB, Germany) in the
framework of the European Project PIANOS (Processing
of Information with Arrays of Nonlineal Optical Solitons).
The experimental observation of CS in semiconductor de-
vices would be a real breakthrough, due to the possibility

of exploiting them as binary units for all-optical informa-
tion treatment. Some results towards theory/experiment
agreement have been already obtained in the case of the
passive configuration [35], while there are recent and very
promising experimental results about the observation of
spatial patterns and CS in active configuration [48].

A further development of the theory will include the
thermal effects, that in semiconductor devices, in some
conditions, play a fundamental role [49]. Somehow, they
can be avoided by operating in the pulsed regime, due
to the slow temperature dynamics, but a progress of the
theory in this direction is necessary and some preliminary
steps have been already done [50].

This work was carried out in the framework of the ESPRIT
LTR Project PIANOS “Processing of Information with Arrays
of Nonlinear Optical Solitons” and of the European Program
HP-RTN Network VISTA “VCSELs for Information Society
Technology Applications”. We thank our partners in PIANOS
and their collaborators, for useful discussions and for exchang-
ing information about preliminary experimental results.
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